Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38557723

RESUMO

CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαß+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αß T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T Auxiliares-Indutores , Humanos , Linfócitos T CD8-Positivos , Ativação Linfocitária , Antígenos HLA , Isoformas de Proteínas/metabolismo
2.
J Clin Invest ; 134(8)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470480

RESUMO

BACKGROUNDWeakly virulent environmental mycobacteria (EM) can cause severe disease in HLA-DRB1*15:02 or 16:02 adults harboring neutralizing anti-IFN-γ autoantibodies (nAIGAs). The overall prevalence of nAIGAs in the general population is unknown, as are the penetrance of nAIGAs in HLA-DRB1*15:02 or 16:02 individuals and the proportion of patients with unexplained, adult-onset EM infections carrying nAIGAs.METHODSThis study analyzed the detection and neutralization of anti-IFN-γ autoantibodies (auto-Abs) from 8,430 healthy individuals of the general population, 257 HLA-DRB1*15:02 or 16:02 carriers, 1,063 patients with autoimmune disease, and 497 patients with unexplained severe disease due to EM.RESULTSWe found that anti-IFN-γ auto-Abs detected in 4,148 of 8,430 healthy individuals (49.2%) from the general population of an unknown HLA-DRB1 genotype were not neutralizing. Moreover, we did not find nAIGAs in 257 individuals carrying HLA-DRB1* 15:02 or 16:02. Additionally, nAIGAs were absent in 1,063 patients with an autoimmune disease. Finally, 7 of 497 patients (1.4%) with unexplained severe disease due to EM harbored nAIGAs.CONCLUSIONThese findings suggest that nAIGAs are isolated and that their penetrance in HLA-DRB1*15:02 or 16:02 individuals is low, implying that they may be triggered by rare germline or somatic variants. In contrast, the risk of mycobacterial disease in patients with nAIGAs is high, confirming that these nAIGAs are the cause of EM disease.FUNDINGThe Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI095983 and U19AIN1625568), the National Center for Advancing Translational Sciences (NCATS), the NIH Clinical and Translational Science Award (CTSA) program (UL1 TR001866), the French National Research Agency (ANR) under the "Investments for the Future" program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), ANR-GENMSMD (ANR-16-CE17-0005-01), ANR-MAFMACRO (ANR-22-CE92-0008), ANRSECTZ170784, the French Foundation for Medical Research (FRM) (EQU201903007798), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003), and ANR AI2D (ANR-22-CE15-0046) projects, the ANR-RHU program (ANR-21-RHUS-08-COVIFERON), the European Union's Horizon 2020 research and innovation program under grant agreement no. 824110 (EASI-genomics), the Square Foundation, Grandir - Fonds de solidarité pour l'enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, the Battersea & Bowery Advisory Group, William E. Ford, General Atlantic's Chairman and Chief Executive Officer, Gabriel Caillaux, General Atlantic's Co-President, Managing Director, and Head of business in EMEA, and the General Atlantic Foundation, Institut National de la Santé et de la Recherche Médicale (INSERM) and of Paris Cité University. JR was supported by the INSERM PhD program for doctors of pharmacy (poste d'accueil INSERM). JR and TLV were supported by the Bettencourt-Schueller Foundation and the MD-PhD program of the Imagine Institute. MO was supported by the David Rockefeller Graduate Program, the Funai Foundation for Information Technology (FFIT), the Honjo International Scholarship Foundation (HISF), and the New York Hideyo Noguchi Memorial Society (HNMS).


Assuntos
Doenças Autoimunes , Infecções por Mycobacterium não Tuberculosas , Adulto , Humanos , Cadeias HLA-DRB1/genética , Autoanticorpos , Genótipo , Predisposição Genética para Doença
3.
Res Sq ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352496

RESUMO

To understand natural resistance to Mycobacterium tuberculosis ( Mtb ) infection, we studied people living with HIV (PLWH) in an area of high Mtb transmission. Given that alveolar leukocytes may contribute to this resistance, we performed single cell RNA-sequencing of bronchoalveolar lavage cells, unstimulated or ex vivo stimulated with Mtb . We obtained high quality cells for 7 participants who were TST & IGRA positive (called LTBI) and 6 who were persistently TST & IGRA negative (called resisters). Alveolar macrophages (AM) from resisters displayed more of an M1 phenotype relative to LTBI AM at baseline. Alveolar lymphocytosis (10%-60%) was exhibited by 5/6 resisters, resulting in higher numbers of CD4 + and CD8 + IFNG -expressing cells at baseline and upon Mtb challenge than LTBI samples. Mycobactericidal granulysin was expressed almost exclusively by a cluster of CD8 + T cells that co-expressed granzyme B, perforin and NK cell receptors. For resisters, these poly-cytotoxic T cells over-represented activating NK cell receptors and were present at 15-fold higher numbers in alveoli compared to LTBI. Altogether, our results showed that alveolar lymphocytosis, with increased numbers of alveolar IFNG -expressing cells and CD8 + poly-cytotoxic T cells, as well as activated AM were strongly associated with protection from persistent Mtb infection in PLWH.

4.
Immunol Rev ; 322(1): 98-112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193358

RESUMO

Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.


Assuntos
COVID-19 , Herpes Zoster , Interferon Tipo I , Poliendocrinopatias Autoimunes , Feminino , Humanos , Idoso , Autoanticorpos
5.
Genet Mol Biol ; 46(3 Suppl 1): e20230128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38226654

RESUMO

COVID-19 pandemic represented a worldwide major challenge in different areas, and efforts undertaken by the scientific community led to the understanding of some of the genetic determinants that influence the different COVID-19 outcomes. In this paper, we review the studies about the role of human genetics in COVID-19 severity and how Brazilian studies also contributed to those findings. Rare variants in genes related to Inborn Errors of Immunity (IEI) in the type I interferons pathway, and its phenocopies, have been described as being causative of severe outcomes. IEI and its phenocopies are present in Brazil, not only in COVID-19 patients, but also in autoimmune conditions and severe reactions to yellow fever vaccine. In addition, studies focusing on common variants and GWAS studies encompassing worldwide patients have found several loci associated with COVID-19 severity. A GWAS study including only Brazilian COVID-19 patients identified a new locus 1q32.1 associated with COVID-19 severity. Thus, more comprehensive studies considering the Brazilian genomic diversity should be performed, since they can help to reveal not only what are the genetic determinants that contribute to the different outcomes for COVID-19 in the Brazilian population, but in the understanding of human genetics in different health conditions.

6.
J Med Virol ; 95(11): e29247, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38009713

RESUMO

The presence of free severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid-antigen in sera (N-antigenemia) has been shown in COVID-19 patients. However, the link between the quantitative levels of N-antigenemia and COVID-19 disease severity is not entirely understood. To assess the dynamics and clinical association of N-antigen sera levels with disease severity in COVID-19 patients, we analyzed data from patients included in the French COVID cohort, with at least one sera sample between January and September 2020. We assessed N-antigenemia levels and anti-N IgG titers, and patient outcomes was classified in two groups, survival or death. In samples collected within 8 days since symptom onset, we observed that deceased patients had a higher positivity rate (93% vs. 81%; p < 0.001) and higher median levels of predicted N-antigenemia (2500 vs. 1200 pg/mL; p < 0.001) than surviving patients. Predicted time to N-antigen clearance in sera was prolonged in deceased patients compared to survivors (23.3 vs 19.3 days; p < 0.0001). In a subset of patients with both sera and nasopharyngeal (NP) swabs, predicted time to N-antigen clearance in sera was prolonged in deceased patients (p < 0.001), whereas NP viral load clearance did not differ between the groups (p = 0.07). Our results demonstrate a strong relationship between N-antigenemia levels and COVID-19 severity on a prospective cohort.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Estudos Prospectivos , Anticorpos Antivirais , Gravidade do Paciente
7.
Proc Natl Acad Sci U S A ; 120(46): e2314225120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931111

RESUMO

Human genetic variants that introduce an AG into the intronic region between the branchpoint (BP) and the canonical splice acceptor site (ACC) of protein-coding genes can disrupt pre-mRNA splicing. Using our genome-wide BP database, we delineated the BP-ACC segments of all human introns and found extreme depletion of AG/YAG in the [BP+8, ACC-4] high-risk region. We developed AGAIN as a genome-wide computational approach to systematically and precisely pinpoint intronic AG-gain variants within the BP-ACC regions. AGAIN identified 350 AG-gain variants from the Human Gene Mutation Database, all of which alter splicing and cause disease. Among them, 74% created new acceptor sites, whereas 31% resulted in complete exon skipping. AGAIN also predicts the protein-level products resulting from these two consequences. We performed AGAIN on our exome/genomes database of patients with severe infectious diseases but without known genetic etiology and identified a private homozygous intronic AG-gain variant in the antimycobacterial gene SPPL2A in a patient with mycobacterial disease. AGAIN also predicts a retention of six intronic nucleotides that encode an in-frame stop codon, turning AG-gain into stop-gain. This allele was then confirmed experimentally to lead to loss of function by disrupting splicing. We further showed that AG-gain variants inside the high-risk region led to misspliced products, while those outside the region did not, by two case studies in genes STAT1 and IRF7. We finally evaluated AGAIN on our 14 paired exome-RNAseq samples and found that 82% of AG-gain variants in high-risk regions showed evidence of missplicing. AGAIN is publicly available from https://hgidsoft.rockefeller.edu/AGAIN and https://github.com/casanova-lab/AGAIN.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Íntrons , Mutação , Genoma
8.
CRISPR J ; 6(5): 462-472, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37824834

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) creates double-stranded breaks, the repair of which generates indels around the target sites. These repairs can be mono-/multi-allelic, and the editing is often random and sometimes prolonged, resulting in considerable intercellular heterogeneity. The genotyping of CRISPR-Cas9-edited cells is challenging and the traditional genotyping methods are laborious. We introduce here a streamlined experimental and computational protocol for genotyping CRISPR-Cas9 genome-edited cells including cost-effective multiplexed sequencing and the software Genotyping MUltiplexed-Sequencing of CRISPR-Localized Editing (GMUSCLE). In this approach, CRISPR-Cas9-edited products are sequenced in great depth, then GMUSCLE quantitatively and qualitatively identifies the genotypes, which enable the selection and investigation of cell clones with genotypes of interest. We validate the protocol and software by performing CRISPR-Cas9-mediated disruption on interferon-α/ß receptor alpha, multiplexed sequencing, and identifying the genotypes simultaneously for 20 cell clones. Besides the multiplexed sequencing ability of this protocol, GMUSCLE is also applicable for the sequencing data from bulk cell populations. GMUSCLE is publicly available at our HGIDSOFT server and GitHub.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genótipo , Proteína 9 Associada à CRISPR/genética , Genoma
9.
J Clin Immunol ; 43(8): 1941-1952, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37584719

RESUMO

PURPOSE: Major histocompatibility complex class II (MHC-II) deficiency is a rare inborn error of immunity (IEI). Impaired antigen presentation to CD4 + T cells results in combined immunodeficiency (CID). Patients typically present with severe respiratory and gastrointestinal tract infections at early ages. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy. METHODS: We describe the clinical, immunologic, and genetic features of eighteen unrelated Iranian patients with MHC-II deficiency. RESULTS: Consanguinity was present in all affected families. The median age at the initial presentation was 5.5 months (range 7 days to 18 years). The main symptoms included failure to thrive, persistent diarrhea, and pneumonia. Autoimmune and neurologic features were also documented in about one-third of the patients, respectively. Thirteen patients carried RFXANK gene mutations, two carried RFX5 gene mutations, and three carried a RFXAP gene mutation. Six patients shared the same RFXANK founder mutation (c.162delG); limited to the Iranian population and dated to approximately 1296 years ago. Four of the patients underwent HSCT; three of them are alive. On the other hand, nine of the fourteen patients who did not undergo HSCT had a poor prognosis and died. CONCLUSION: MHC-II deficiency is not rare in Iran, with a high rate of consanguinity. It should be considered in the differential diagnosis of CID at any age. With the limited access to HSCT and its variable results in MHC-II deficiency, implementing genetic counseling and family planning for the affected families are mandatory. We are better determined to study the c.162delG RFXANK heterozygous mutation frequency in the Iranian population.


Assuntos
Proteínas de Ligação a DNA , Imunodeficiência Combinada Severa , Fatores de Transcrição , Humanos , Recém-Nascido , Proteínas de Ligação a DNA/genética , Antígenos de Histocompatibilidade Classe II/genética , Irã (Geográfico) , Mutação/genética , Imunodeficiência Combinada Severa/genética , Fatores de Transcrição/genética
10.
Nature ; 621(7977): 120-128, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558883

RESUMO

Humans display substantial interindividual clinical variability after SARS-CoV-2 infection1-3, the genetic and immunological basis of which has begun to be deciphered4. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene activity compared with influenza A virus, and a unique pro-inflammatory signature in myeloid cells. Transcriptional responses to viruses display marked population differences, primarily driven by changes in cell abundance including increased lymphoid differentiation associated with latent cytomegalovirus infection. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell composition on population disparities in immune responses, with genetic variants exerting a strong effect on specific loci. Furthermore, we show that natural selection has increased population differences in immune responses, particularly for variants associated with SARS-CoV-2 response in East Asians, and document the cellular and molecular mechanisms by which Neanderthal introgression has altered immune functions, such as the response of myeloid cells to viruses. Finally, colocalization and transcriptome-wide association analyses reveal an overlap between the genetic basis of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into the factors contributing to current disparities in COVID-19 risk.


Assuntos
COVID-19 , Genética Populacional , SARS-CoV-2 , Análise da Expressão Gênica de Célula Única , Animais , Humanos , Diferenciação Celular , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Citomegalovirus/fisiologia , População do Leste Asiático/genética , Introgressão Genética , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Interferons/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Mieloides/imunologia , Homem de Neandertal/genética , Homem de Neandertal/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Seleção Genética , Latência Viral
11.
Brain ; 146(10): 4306-4319, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37453099

RESUMO

Patients with herpes simplex virus (HSV) encephalitis (HSE) often develop neuronal autoantibody-associated encephalitis (AE) post-infection. Risk factors of AE are unknown. We tested the hypotheses that predisposition for AE post-HSE may be involved, including genetic variants at specific loci, human leucocyte (HLA) haplotypes, or the blood innate immune response against HSV, including type I interferon (IFN) immunity. Patients of all ages with HSE diagnosed between 1 January 2014 and 31 December 2021 were included in one of two cohorts depending on whether the recruitment was at HSE onset (Spanish Cohort A) or by the time of new neurological manifestations (international Cohort B). Patients were assessed for the type of neurological syndromes; HLA haplotypes; blood type I-IFN signature [RNA quantification of 6 or 28 IFN-response genes (IRG)] and toll-like receptor (TLR3)-type I IFN-related gene mutations. Overall, 190 patients (52% male) were recruited, 93 in Cohort A and 97 in Cohort B. Thirty-nine (42%) patients from Cohort A developed neuronal autoantibodies, and 21 (54%) of them developed AE. Three syndromes (choreoathetosis, anti-NMDAR-like encephalitis and behavioural-psychiatric) showed a high (≥95% cases) association with neuronal autoantibodies. Patients who developed AE post-HSE were less likely to carry the allele HLA-A*02 (4/21, 19%) than those who did not develop AE (42/65, 65%, P = 0.0003) or the Spanish general population (2005/4335, 46%, P = 0.0145). Blood IFN signatures using 6 or 28 IRG were positive in 19/21 (91%) and 18/21 (86%) patients at HSE onset, and rapidly decreased during follow-up. At Day 21 after HSE onset, patients who later developed AE had higher median IFN signature compared with those who did not develop AE [median Zs-6-IRG 1.4 (0.6; 2.0) versus 0.2 (-0.4; 0.8), P = 0.03]. However, a very high median Zs-6-IRG (>4) or persistently increased IFN signature associated with uncontrolled viral infection. Whole exome sequencing showed that the percentage of TLR3-IFN-related mutations in patients who developed AE was not different from those who did not develop AE [3/37 (8%) versus 2/57 (4%), P = 0.379]. Multivariate logistic regression showed that a moderate increase of the blood IFN signature at Day 21 (median Zs-6-IRG >1.5 but <4) was the most important predictor of AE post-HSE [odds ratio 34.8, interquartile ratio (1.7-691.9)]. Altogether, these findings show that most AE post-HSE manifest with three distinct syndromes, and HLA-A*02, but not TLR3-IFN-related mutations, confer protection from developing AE. In addition to neuronal autoantibodies, the blood IFN signature in the context of HSE may be potentially useful for the diagnosis and monitoring of HSE complications.


Assuntos
Encefalite por Herpes Simples , Interferon Tipo I , Doenças do Sistema Nervoso , Humanos , Masculino , Feminino , Encefalite por Herpes Simples/complicações , Encefalite por Herpes Simples/genética , Receptor 3 Toll-Like/genética , Autoanticorpos , Antígenos HLA-A
12.
Annu Rev Biomed Data Sci ; 6: 465-486, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37196358

RESUMO

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is silent or benign in most infected individuals, but causes hypoxemic COVID-19 pneumonia in about 10% of cases. We review studies of the human genetics of life-threatening COVID-19 pneumonia, focusing on both rare and common variants. Large-scale genome-wide association studies have identified more than 20 common loci robustly associated with COVID-19 pneumonia with modest effect sizes, some implicating genes expressed in the lungs or leukocytes. The most robust association, on chromosome 3, concerns a haplotype inherited from Neanderthals. Sequencing studies focusing on rare variants with a strong effect have been particularly successful, identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in another 15-20% of cases. Our growing understanding of the impact of human genetic variation on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals and populations.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudo de Associação Genômica Ampla , Interferon Tipo I/genética , Genômica
13.
Sci Immunol ; 8(82): eade2860, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083451

RESUMO

Inborn errors of TLR3-dependent type I IFN immunity in cortical neurons underlie forebrain herpes simplex virus-1 (HSV-1) encephalitis (HSE) due to uncontrolled viral growth and subsequent cell death. We report an otherwise healthy patient with HSE who was compound heterozygous for nonsense (R422*) and frameshift (P493fs9*) RIPK3 variants. Receptor-interacting protein kinase 3 (RIPK3) is a ubiquitous cytoplasmic kinase regulating cell death outcomes, including apoptosis and necroptosis. In vitro, the R422* and P493fs9* RIPK3 proteins impaired cellular apoptosis and necroptosis upon TLR3, TLR4, or TNFR1 stimulation and ZBP1/DAI-mediated necroptotic cell death after HSV-1 infection. The patient's fibroblasts displayed no detectable RIPK3 expression. After TNFR1 or TLR3 stimulation, the patient's cells did not undergo apoptosis or necroptosis. After HSV-1 infection, the cells supported excessive viral growth despite normal induction of antiviral IFN-ß and IFN-stimulated genes (ISGs). This phenotype was, nevertheless, rescued by application of exogenous type I IFN. The patient's human pluripotent stem cell (hPSC)-derived cortical neurons displayed impaired cell death and enhanced viral growth after HSV-1 infection, as did isogenic RIPK3-knockout hPSC-derived cortical neurons. Inherited RIPK3 deficiency therefore confers a predisposition to HSE by impairing the cell death-dependent control of HSV-1 in cortical neurons but not their production of or response to type I IFNs.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Humanos , Morte Celular , Encefalite por Herpes Simples/genética , Herpesvirus Humano 1/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
14.
PLoS Pathog ; 19(3): e1011260, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972292

RESUMO

Leprosy, caused by Mycobacterium leprae, rarely affects children younger than 5 years. Here, we studied a multiplex leprosy family that included monozygotic twins aged 22 months suffering from paucibacillary leprosy. Whole genome sequencing identified three amino acid mutations previously associated with Crohn's disease and Parkinson's disease as candidate variants for early onset leprosy: LRRK2 N551K, R1398H and NOD2 R702W. In genome-edited macrophages, we demonstrated that cells expressing the LRRK2 mutations displayed reduced apoptosis activity following mycobacterial challenge independently of NOD2. However, employing co-immunoprecipitation and confocal microscopy we showed that LRRK2 and NOD2 proteins interacted in RAW cells and monocyte-derived macrophages, and that this interaction was substantially reduced for the NOD2 R702W mutation. Moreover, we observed a joint effect of LRRK2 and NOD2 variants on Bacillus Calmette-Guérin (BCG)-induced respiratory burst, NF-κB activation and cytokine/chemokine secretion with a strong impact for the genotypes found in the twins consistent with a role of the identified mutations in the development of early onset leprosy.


Assuntos
Predisposição Genética para Doença , Hanseníase , Criança , Humanos , Alelos , Genótipo , Hanseníase/genética , Mutação , Proteína Adaptadora de Sinalização NOD2/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética
15.
J Exp Med ; 220(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36880831

RESUMO

X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P < 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.


Assuntos
COVID-19 , Fator 88 de Diferenciação Mieloide , Criança , Humanos , Proteínas Adaptadoras de Transdução de Sinal , COVID-19/complicações , Fator 88 de Diferenciação Mieloide/genética , SARS-CoV-2 , Receptor 7 Toll-Like
16.
Cell Genom ; 3(2): 100248, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36819665

RESUMO

Ancient genomics can directly detect human genetic adaptation to environmental cues. However, it remains unclear how pathogens have exerted selective pressures on human genome diversity across different epochs and affected present-day inflammatory disease risk. Here, we use an ancestry-aware approximate Bayesian computation framework to estimate the nature, strength, and time of onset of selection acting on 2,879 ancient and modern European genomes from the last 10,000 years. We found that the bulk of genetic adaptation occurred after the start of the Bronze Age, <4,500 years ago, and was enriched in genes relating to host-pathogen interactions. Furthermore, we detected directional selection acting on specific leukocytic lineages and experimentally demonstrated that the strongest negatively selected candidate variant in immunity genes, lipopolysaccharide-binding protein (LBP) D283G, is hypomorphic. Finally, our analyses suggest that the risk of inflammatory disorders has increased in post-Neolithic Europeans, possibly because of antagonistic pleiotropy following genetic adaptation to pathogens.

17.
J Clin Immunol ; 43(5): 921-932, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36821021

RESUMO

BACKGROUND: Cryptococcosis is a potentially life-threatening fungal disease caused by encapsulated yeasts of the genus Cryptococcus, mostly C. neoformans or C. gattii. Cryptococcal meningitis is the most frequent clinical manifestation in humans. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) have recently been discovered in otherwise healthy adult patients with cryptococcal meningitis, mostly caused by C. gattii. We hypothesized that three Colombian patients with cryptococcal meningitis caused by C. neoformans in two of them would carry high plasma levels of neutralizing auto-Abs against GM-CSF. METHODS: We reviewed medical and laboratory records, performed immunological evaluations, and tested for anti-cytokine auto-Abs three previously healthy HIV-negative adults with disseminated cryptococcosis. RESULTS: Peripheral blood leukocyte subset levels and serum immunoglobulin concentrations were within the normal ranges. We detected high levels of neutralizing auto-Abs against GM-CSF in the plasma of all three patients. CONCLUSIONS: We report three Colombian patients with disseminated cryptococcosis associated with neutralizing auto-Abs against GM-CSF. Further studies should evaluate the genetic contribution to anti-GM-CSF autoantibody production and the role of the GM-CSF signaling pathway in the immune response to Cryptococcus spp.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Adulto , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Meningite Criptocócica/diagnóstico , Autoanticorpos , Colômbia , Criptococose/diagnóstico
18.
Sci Immunol ; 8(80): eabq5204, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36763636

RESUMO

Patients with autosomal recessive (AR) IL-12p40 or IL-12Rß1 deficiency display Mendelian susceptibility to mycobacterial disease (MSMD) due to impaired IFN-γ production and, less commonly, chronic mucocutaneous candidiasis (CMC) due to impaired IL-17A/F production. We report six patients from four kindreds with AR IL-23R deficiency. These patients are homozygous for one of four different loss-of-function IL23R variants. All six patients have a history of MSMD, but only two suffered from CMC. We show that IL-23 induces IL-17A only in MAIT cells, possibly contributing to the incomplete penetrance of CMC in patients unresponsive to IL-23. By contrast, IL-23 is required for both baseline and Mycobacterium-inducible IFN-γ immunity in both Vδ2+ γδ T and MAIT cells, probably contributing to the higher penetrance of MSMD in these patients. Human IL-23 appears to contribute to IL-17A/F-dependent immunity to Candida in a single lymphocyte subset but is required for IFN-γ-dependent immunity to Mycobacterium in at least two lymphocyte subsets.


Assuntos
Interferon gama , Interleucina-23 , Infecções por Mycobacterium , Mycobacterium , Humanos , Predisposição Genética para Doença , Interleucina-17/genética , Interleucina-23/genética , Infecções por Mycobacterium/imunologia
19.
J Clin Immunol ; 43(4): 728-740, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36630059

RESUMO

PURPOSE: The first molecular evidence of a monogenic predisposition to mycobacteria came from the study of Mendelian susceptibility to mycobacterial disease (MSMD). We aimed to study this Mendelian susceptibility to mycobacterial diseases in Moroccan kindreds through clinical, immunological, and genetic analysis. METHODS: Patients presented with clinical features of MSMD were recruited into this study. We used whole blood samples from patients and age-matched healthy controls. To measure IL-12 and IFN-γ production, samples were activated by BCG plus recombinant human IFN-γ or recombinant human IL-12. Immunological assessments and genetic analysis were also done for patients and their relatives. RESULTS: Our study involved 22 cases from 15 unrelated Moroccan kindreds. The average age at diagnosis is 4 years. Fourteen patients (64%) were born to consanguineous parents. All patients were vaccinated with the BCG vaccine, and twelve of them (55%) developed locoregional or disseminated BCG infections. The other symptomatic patients had severe tuberculosis and/or recurrent salmonellosis. Genetic mutations were identified on the following genes: IL12RB1 in 8 patients, STAT1 in 7 patients; SPPL2A, IFNGR1, and TYK2 in two patients each; and TBX21 in one patient, with different modes of inheritance. All identified mutations/variants altered production or response to IFN-γ or both. CONCLUSION: Severe forms of tuberculosis and complications of BCG vaccination may imply a genetic predisposition present in the Moroccan population. In the presence of these infections, systematic genetic studies became necessary. BCG vaccination is contraindicated in MSMD patients and should be delayed in newborn siblings until the exclusion of a genetic predisposition to mycobacteria.


Assuntos
Infecções por Mycobacterium , Mycobacterium , Tuberculose , Recém-Nascido , Humanos , Pré-Escolar , Predisposição Genética para Doença , Vacina BCG , Infecções por Mycobacterium/etiologia , Tuberculose/genética , Interleucina-12 , Mutação/genética
20.
J Exp Med ; 220(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36326697

RESUMO

Inborn errors of IFN-γ immunity can underlie tuberculosis (TB). We report three patients from two kindreds without EBV viremia or disease but with severe TB and inherited complete ITK deficiency, a condition associated with severe EBV disease that renders immunological studies challenging. They have CD4+ αß T lymphocytopenia with a concomitant expansion of CD4-CD8- double-negative (DN) αß and Vδ2- γδ T lymphocytes, both displaying a unique CD38+CD45RA+T-bet+EOMES- phenotype. Itk-deficient mice recapitulated an expansion of the γδ T and DN αß T lymphocyte populations in the thymus and spleen, respectively. Moreover, the patients' T lymphocytes secrete small amounts of IFN-γ in response to TCR crosslinking, mitogens, or forced synapse formation with autologous B lymphocytes. Finally, the patients' total lymphocytes secrete small amounts of IFN-γ, and CD4+, CD8+, DN αß T, Vδ2+ γδ T, and MAIT cells display impaired IFN-γ production in response to BCG. Inherited ITK deficiency undermines the development and function of various IFN-γ-producing T cell subsets, thereby underlying TB.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Tuberculose , Animais , Humanos , Camundongos , Interferon gama , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T , Timo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...